Proteome-wide analysis reveals clues of complementary interactions between mRNAs and their cognate proteins as the physicochemical foundation of the genetic code
نویسندگان
چکیده
Despite more than 50 years of effort, the origin of the genetic code remains enigmatic. Among different theories, the stereochemical hypothesis suggests that the code evolved as a consequence of direct interactions between amino acids and appropriate bases. If indeed true, such physicochemical foundation of the mRNA/protein relationship could also potentially lead to novel principles of protein-mRNA interactions in general. Inspired by this promise, we have recently explored the connection between the physicochemical properties of mRNAs and their cognate proteins at the proteome level. Using experimentally and computationally derived measures of solubility of amino acids in aqueous solutions of pyrimidine analogs together with knowledge-based interaction preferences of amino acids for different nucleobases, we have revealed a statistically significant matching between the composition of mRNA coding sequences and the base-binding preferences of their cognate protein sequences. Our findings provide strong support for the stereochemical hypothesis of genetic code's origin and suggest the possibility of direct complementary interactions between mRNAs and cognate proteins even in present-day cells.
منابع مشابه
Evidence of direct complementary interactions between messenger RNAs and their cognate proteins
Recently, the ability to interact with messenger RNA (mRNA) has been reported for a number of known RNA-binding proteins, but surprisingly also for different proteins without recognizable RNA binding domains including several transcription factors and metabolic enzymes. Moreover, direct binding to cognate mRNAs has been detected for multiple proteins, thus creating a strong impetus to search fo...
متن کاملOn the Contribution of Protein Spatial Organization to the Physicochemical Interconnection between Proteins and Their Cognate mRNAs
Early-stage evolutionary development of the universal genetic code remains a fundamental, open problem. One of the possible scenarios suggests that the code evolved in response to direct interactions between peptides and RNA oligonucleotides in the primordial environment. Recently, we have revealed a strong matching between base-binding preferences of modern protein sequences and the compositio...
متن کاملMalleable nature of mRNA-protein compositional complementarity and its functional significance
It has recently been demonstrated that nucleobase-density profiles of typical mRNA coding sequences exhibit a complementary relationship with nucleobase-interaction propensity profiles of their cognate protein sequences. This finding supports the idea that the genetic code developed in response to direct binding interactions between amino acids and appropriate nucleobases, but also suggests tha...
متن کاملComputational analysis of amino acids and their sidechain analogs in crowded solutions of RNA nucleobases with implications for the mRNA–protein complementarity hypothesis
Many critical processes in the cell involve direct binding between RNAs and proteins, making it imperative to fully understand the physicochemical principles behind such interactions at the atomistic level. Here, we use molecular dynamics simulations and 15 μs of sampling to study the behavior of amino acids and amino acid sidechain analogs in high-concentration aqueous solutions of standard RN...
متن کاملAnalogue encoding of physicochemical properties of proteins in their cognate messenger RNAs
Being related by the genetic code, mRNAs and their cognate proteins exhibit mutually interdependent compositions, which implies the possibility of a direct connection between their general physicochemical properties. Here we probe the general potential of the cell to encode information about proteins in the average characteristics of their cognate mRNAs and decode it in a ribosome-independent m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2013